A Nonextensive Electrolyte UNIQUAC Model for Prediction of Mean Activity Coefficients of Binary Electrolyte Solutions
Authors
Abstract:
In this work, an electrolyte-UNIQUAC model was developed by replacement of Boltzmann weight binary interaction parameters by the nonextensive Tsallis weight. A summation of the long-range electrostatic term (Debye-Huckel equation) and a short-range interaction term were considered in the calculation of thermodynamic properties. A framework proposed by Chen and co-workers was employed for the derivation of the local mole fractions. Application of the nonextensive theory increased the degree of freedom of the present model (T-E-UNIQUAC). Furthermore, the strength of the model lies in its ability to calculate individual activity coefficients of ions. The applicability of the T-E-UNIQUAC model has been tested using aqueous electrolyte solutions and results have been compared with Messnaoui, Chen and Pitzer models.
similar resources
A Simplified Perturbation Model for Prediction of Mean Ionic Activity Coefficient in Aqueous Electrolyte Solution
full text
An Evaluation of Four Electrolyte Models for the Prediction of Thermodynamic Properties of Aqueous Electrolyte Solutions
In this work, the performance of four electrolyte models for prediction the osmotic and activity coefficients of different aqueous salt solutions at 298 K, atmospheric pressure and in a wide range of concentrations are evaluated. In two of these models, (electrolyte Non-Random Two-Liquid e-NRTL and Mean Spherical Approximation-Non-Random Two-Liquid MSA-NRTL), association between ions of opposit...
full textModeling electrolyte solutions with the extended universal quasichemical (UNIQUAC) model*
The extended universal quasichemical (UNIQUAC) model is a thermodynamic model for solutions containing electrolytes and nonelectrolytes. The model is a Gibbs excess function consisting of a Debye–Hückel term and a standard UNIQUAC term. The model only requires binary ion-specific interaction parameters. A unique choice of standard states makes the model able to reproduce solid–liquid, vapor–liq...
full textOptimization of Extended UNIQUAC Model Parameter for Mean Activity Coefficient of Aqueous Chloride Solutions using Genetic+PSO
In the present study, in order to predict the activity coefficient of inorganic ions, 12 cases of aqueous chloride solution were considered (AClx=1,2; A=Li, Na, K, Rb, Mg, Ca, Ba, Mn, Fe, Co, Ni). For this study, the UNIQUAC thermodynamic model is desired and its adjustable parameters are optimized with the Genetic + PSO algorithm. The optimization of the UNIQUAC model with PSO+ genetic algorit...
full textPrediction of Hydrate Formation for the Systems Containing Single and Mixed Electrolyte Solutions
In this work the effect of electrolytes on hydrate formation was investigated. To do so, a new model was used in predicting the hydrate formation conditions in presence of both single and mixed electrolyte solutions. The new model is based on the van der Waals - Platteeuw hydrate equation of state. In order to evaluate the values for the activity of water in electrolyte solutions t...
full textMy Resources
Journal title
volume 6 issue 4
pages 773- 784
publication date 2018-12-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023